If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-6000=0
a = 1; b = -10; c = -6000;
Δ = b2-4ac
Δ = -102-4·1·(-6000)
Δ = 24100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24100}=\sqrt{100*241}=\sqrt{100}*\sqrt{241}=10\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{241}}{2*1}=\frac{10-10\sqrt{241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{241}}{2*1}=\frac{10+10\sqrt{241}}{2} $
| -4(2x-5)-3x=-13 | | (0.7)^x=-10,000 | | 20=-8w+2(w-2) | | 6x+15=75+42 | | 0.4(x+2.4)=2.96= | | 2x+5x+6.3=14.4 | | -9+2x=59+90 | | -6-18=15-7x | | 3/5(30x-15)=75 | | a^2-8a+11=-4 | | -7x+9+3x=49 | | 8.3(x-3.1)=-37.35= | | -2x-9=59+90 | | 7-3(2x+3)=-4 | | 4.5(x-9)=-13.5= | | 2x-13=-13 | | 2(2t+4)=3—4(24−8t) | | -9x+2x=59+90 | | 3(2x5)=3x4x | | d–9=11 | | 5x-99=81-7x | | 12c-5=9c+22c= | | x2+30=111 | | -12.7z+18.72=-14.3z | | 1.5(x+7)=11.25= | | -9+2x=50+90 | | -5n=-6n-17 | | 5+2(x–1)=12+3x | | .33x+1200=23x | | -10y+2=19-9y | | 24=n+13 | | 3x+10=200 |